Volker Turau, Thomas C. Rakow

A Schema Partition for Multimedia Database
Management Systems

Address of authors:

Prof. Dr. Volker Turau

Fachhochschule Gief3en, Fachbereich MND

Wilhelm—L euschnerstral3e 13

D W-6360 Friedberg, Germany

E—mail: turau@prfhfb.fh—friedberg.de

Thank: Thiswork was partially done while the author visited the database group of HP
Labsin Palo Alto.

Thomas C. Rakow

GMD-IPSI

Integrated Publication and Information Systems Institute
Dolivostral3e 15

D W-6100 Darmstadt, Germany

E-mail: rakow@darmstadt.gmd.de

In theinterest of a subsequent final publication this manuscript should not be
copied. Critical commentswould be appreciated by the authors.

www.manaraa.com

A Schema Partition for Multimedia Database Management

Systems

Volker Turau *

Fachhochschule Giessen
Fachbereich MND
Wilhelm-Leuschnerstr. 13
W6360 Friedberg, Germany
e-mail: turau@prthtb.th-friedberg.de

Abstract

We propose a partition of the conceptual schema
of multimedia databases according to the different
aspects of multimedia data. (1) In a multimedia
type schema the specific characteristics of multi-
media data are modelled but a homogeneous in-
terface utilizing polymorphism is used. (2) A de-
vice schema makes applications independent from
low level aspects of multimedia presentation de-
vices and import or export from and to external
environments. (3) An interaction schema allows
interactive manipulation of presented multimedia
data. The requirements of managing multimedia
data in a database system like storage of high vol-
ume data and time-dependent presentation lead
to support specific built-in functionality. This is
also reflected in a new architecture currently un-
der development using the object-oriented database
management system VODAK designed and imple-
mented at GMD-IPSI. The proposed partition pro-
vides a high degree of flexibility for extending the
database system and designing multimedia appli-
cations. By making types describing devices and
interaction tools part of the database schema, in-
teractive queries can be supported by the database
system.

Keywords: multimedia database management
system, schema modeling, interactive query lan-
guage, object-oriented.

*This work was partially done while the author visited

the database group of HP Labs in Palo Alto.

Thomas C. Rakow

GMD - Integrated Publication and
Information Systems Institute (IPSI)
Dolivostr.15
W6100 Darmstadt, Germany
e-mail: rakow@darmstadt.gmd.de

1 Introduction

Many types of information which were previously
represented in analog form are now also available in
digitized form. The most important examples are
audio and video and samples of signal data such
as ECG. This has several advantages such as loss-
less storage and transmission of the data. Further-
more it offers the possibility that all information
can be processed by a computer, thereby the vari-
ety of ways data can be utilized and manipulated is
enormously increased. Combining these new multi-
media datatypes with data types already in use such
as text and numbers can be achieved, resulting in a
much more flexible management of the data.

Since multimedia systems collect, maintain, ma-
nipulate and present on request large volumes of
persistent data, which often are changed by many
users in parallel, a database management system
is an essential ingredient of multimedia systems.
A multimedia database management system (MM-
DBMS) should have the capability of storing, man-
aging and retrieving information on individual me-
dia, managing interrelationships between the infor-
mation represented by different media and it should
be able to exploit these media for presentation pur-
poses. The advantages a database management sys-
tem offers in comparison to file systems are well
known: physical aspects of storage are transpar-
ent for applications, protection of data through
defined access methods, query facility, multi-user
access through transaction mechanisms and relia-
bility through recovery concepts. Object-oriented
database systems additionally provide the encap-
sulation of data and behavior and offer extensibil-

www.manaraa.com

ity [3, 4]. In order to preserve these advantages,
it 1s necessary to integrate multimedia data into
database management systems.

So far the focus of research on multimedia sys-
tems has been on conceptual modeling and single
user systems. Most of the work favors the object-
oriented approach and there seems to be a consent
which constructs should be supported. But many
proposals resemble more a programming environ-
ment than a multimedia database system. Very of-
ten database system issues such as query process-
ing, user interaction or architectural implications
remain unconsidered.

In this paper we propose a partition of the con-
ceptual model according to the different aspects of
management of multimedia data:

- a multimedia type schema to model the specific
characteristics of multimedia data;

- a device schema to make applications indepen-
dent from low level aspects of presentation and
import or export from and to external environ-
ments;

- an tnteraction schema to allow interactive ma-
nipulation of presented information.

Our goal 1s to provide a high degree of flexibility for
designing applications and on the other hand recog-
nizing database specific requirements. For reasons
of efficiency it is sometimes not feasible to realize
some types as suggested from a modeling point of
view. This can be resolved by providing built-in
multimedia types with interfaces that conform to
the logical view and have an efficient implementa-
tion. For example from the model point of view
a video is a sequence of frames with a correspond-
ing audio track. But if each frame is treated as
an individual object, continuous playing i1s not pos-
sible. Thus a video can statically be modeled as
a list of frames but dynamically it behaves differ-
ently. This way the enormous sizes of the data and
the real time aspects of their presentation can be
handled. By making types describing devices and
interaction tools part of the database schema, inter-
active queries are possible (e.g. queries where the
input is provided in a nontextual form by devices).

The partition of the DBMS schema has several
advantages. Individual parts can be compiled sep-
arately and the information is stored in the data
dictionary of the database. Other schemas can in-
clude those parts with an include mechanism similar

to that found in programming languages. This way
users can share schemas. This will ease the main-
tenance of interfaces, facilitate the development of
new applications and reduce the compile time.

VODAK is a prototype of an object-oriented and
distributed DBMS developed at GMD-IPSI [8, 7].
One of the applications of VODAK was a video
database. The gained experience led to us to the
proposed architecture and currently this architec-
ture is realized.

The main contribution of this paper is a strong
consideration of database specific issues in the de-
sign of a multimedia system. The requirement for
interactive queries as well as the recognition of the
difference between the modeling functionality and
the built-in functionality lead to a partition of the
database schema. This is also reflected in a new
architecture for a multimedia database.

After reviewing the existing work and some char-
acteristics of multimedia data types an architecture
for a multimedia database is presented in section
3. In section 4 the schema partition is introduced
and the individual parts are described. In section
5 it 18 demonstrated how the different parts work
together.

1.1 Existing Work

Comprehensive multimedia processing, which has
not been widely put to practical use to date, be-
comes possible; here multimedia processing encom-
passes the integrated generation, manipulation, pre-
sentation and storage of machine processable infor-
mation expressed by different media. This 1s al-
ready reflected in a variety of new products such
as Intel’s DVI technology (digital video interac-
tive) and CD-T (compact disc-interactive) which is
a system specification for interactive audio, video,
and computer system based on CD as the storage
medium. The spectrum of multimedia applications
is wide and ranges from education over mailing to
publishing systems.

Multimedia database systems are a relatively new
field due to the fact that the necessary hardware
became available only recently and 1s still develop-
ing. The first approaches were database systems for
specialized data such as spatial databases [10], [9]
and pictorial databases [13]. But in some cases a
DBMS was only used as a somewhat complex file
system. Spatial databases were attractive because
the semantics of the objects and operations were
clearly defined and their properties can be derived

www.manaraa.com

from geometry.

One of the first multimedia effort in managing
multimedia data was the Multimedia Information
Manager in the ORION object-oriented database
system, developed at MCC [15, 16] and now avail-
able as the product ITASCA. The integration of the
new data types is accomplished through a set of def-
initions of class hierarchies and a message passing
protocol not only for the multimedia capture, stor-
age, and presentation devices, but also for the cap-
tured and stored multimedia objects. This way a
high degree of flexibility is achieved since new stor-
age or presentation devices are easily included by
providing the corresponding types as subtypes of
the existing types. This approach is very promising,
but it remains more or less a collection of classes.
Specific database i1ssues such as query processing,
user interaction and architectural implications are
not considered. Furthermore, it can be questioned
whether the modeling of devices down to the level
of methods such as get-next-block lead to efficient
realizations. In the case of continuous media such
as video or audio this is just not feasible.

Other projects are MINOS, the multimedia ob-
ject presentation manager developed at the Univer-
sity of Crete [2] and DOM dealing with distributed
multimedia object management [6].

Synchronization mechanisms for distributed mul-
timedia systems are addressed in [12], an approach
for modeling time-dependenies of multimedia data
can be found in [1], and the design and implemen-
tation of a continuous media player is described in

[11].

2 MM-DBMS vs DBMS

Some of the characteristics of multimedia datatypes
make MM-DBMS different from traditional DBMS.
These differences will be discussed in the following.

Multimedia data differs from ordinary data in
that respect, that the presentation of the data
1s not canonical for traditional computer systems.
The types of conventional data usually comprise
the types known from programming languages (e.g.
character, integer, real or records of these types)
and their representation is inherent to a computer
system. Multimedia data is not directly supported
by programming languages and its presentation de-
pends on special devices and additional information
such as image format, compression techniques and
layout description is necessary.

One of the key obstacles for many multimedia
applications is the vast amount of data involved.
The use of digital images often is not viable due
to high storage or transmission costs, even when
image capture and presentation devices are afford-
able. Modern image compression technology can
compress typical images from 1/10 to 1/50 of their
uncompressed size without visibly affecting image
quality. But the storage requirements for one object
still exceeds the size of an average object handled
by conventional database systems. Storage media
such as optical disks have to be considered. Also
the available techniques for buffer management, in-
dexing, recovery etc. are not suitable for these sizes
of data, for example objects do not fit into main
memory in their entity.

Traditional database applications use data of
fixed size, but the size of multimedia data such as
bitmaps, voice or video is not fixed and can vary dy-
namically. This poses new problems for the man-
agement of the storage layer. New storage struc-
tures for continuous data are needed. A frame in a
video can be regarded as a single object and treated
accordingly in the database, but this way continu-
ous presentation is not feasible. Furthermore, many
traditional databases do not support unformatted
data. So far all unformatted data (mainly text)
has been handled in database systems through long
fields or BLOB’s (binary large object), but these
usually support only a few operations such as read-
ing or writing them in a single operation as a unit
and they are excluded from queries. It is necessary
to access or update parts of long fields and it must
be possible to impose some structure to accommo-
date for example a frame structure like in a video
sequence.

In audio, video, and voice the information itself
Synchroniza-
tion assures a temporal order of events. Examples

is expressed as a function of time.

of synchronization of multimedia data are a movie
and its soundtrack or the synchronization of two
Conventional databases do not
provide mechanisms for expressing these synchro-

stereo channels.

nization conditions nor for controlling them.

In contrast to conventional data the production,
manipulation, and presentation of multimedia data
is performed with special devices or tools which are
external to the database. Hence these processes
cannot be done inside the database unless these
tools are integrated into the MM-DBMS. To pro-
vide the flexibility needed, generic interfaces must

www.manaraa.com

be provided to integrate new devices. The access to
these devices by concurrent presentation processes
must be controlled and the interaction with those
must be handled (i.e. interrupting the presentation
of a continuous multimedia object).

The integration of presentation devices is very
appealing from another point of view. They en-
hance the possibility for user interaction with the
database, for example interaction supported queries
(e.g. based on pointing device) become possible.
This can only partially be achieved in case these
devices are included in the application.

2.1 Multimedia Information

Multimedia information refers to a combination of
text, still images, video and sound. Multimedia
documents are examples which comprise the above
information types. The new datatypes can be cate-
gorized as discrete or continuous data, stressing the
time dependency. In the following the characteris-
tics of these information types are presented.

2.1.1 Discrete Data

Still Images (Bitmaps)

The arrangement of adjacent pixels and lines in a
contiguous region of memory representing an im-
age 1s called a bitmap. There are several different
formats for storing colored images available such
as GIF, Portable Bit Map or JFIF etc. The cru-
cial value of a bitmap is the number of bits used
to represent the color value of each pixel in a dig-
itized image. Real color pictures supporting 16.7
million colors require at least 24 bits per pixel. A
high resolution VCR has a resolution of 1152 x 900
pixel. Under these assumption one color picture re-
quires about 3 MBytes of storage. Modern image
compression techniques can compress typical im-
ages from 1/10 to 1/50 of their uncompressed size
without visibly affecting image quality. A general-
purpose standard image compression technique for
continuous-tone still images has been established
by the Joint Photographic Experts Group (JPEG)
[14]. This technique is applicable to practically any
kind of continuous-tone digital source image and
has tractable computational complexity. The JPEG
proposal also contains an interchange format syntax
which ensures that a JPEG-compressed image can
be exchanged successfully between different appli-
cation environments.

Graphics

Structured graphics are widely used on computers.
In the vector format, a graphical image is stored
as a group of shapes at specified positions (points,
lines, rectangles, circles etc.). The shapes are hi-
erarchical composites of more primitive onces. A
complex group of shapes may be as large as 100K
bytes. There are some proposals to standardize
the definition of these shapes, such as GDI in Mi-
crosoft Windows and Apple Macintosh’s Quickdraw
or CGM in ODA. These standards are intended to
allow interchange of graphics data between different
applications on different machines. It is possible to
translate an image in a vector format into a bitmap
format but not vice versa applicable to a broader
range of images.

2.1.2 Continuous Data

Video

Video data consists of motion picture and audio.
The amounts of storage for digital video are enor-
mous. For a small display window of size 182x137
at a frame/second rate of 30 using 16 bit/pixel
a 40 MByte disk could store only 4.5 minutes of
video (not taking into account the audio). Even
this 1s only feasible using modern compression tech-
niques. This implies that different storage devices
are needed such as CD-ROM, WORM or MO. The
aim of the Moving Picture Expert Group (MPEG)
is to develop a standardization of video compres-
sion techniques [5]. MPEG is aiming for applica-
tions on different storage media and communica-
tion channels such as CD-ROM, DAT, Winchester
Disk, writeable optical disks, ISDN, LAN, etc. The
compression algorithm achieves a high compression
associated with interframe coding, while not com-
promising random access for those applications that
demand it.

Audio

The storage requirements for audio are not as high
as for video. A Compact Disc - Digital Audio (CD-
DA) plays stereo audio for up to 74 minutes, which
is equivalent to 764 megabytes of digitized audio
data. Unfortunately there is no natural structure
to impose on audio like frames for video. Obviously
there is no equivalent to a still picture in audio.

www.manaraa.com

3 An Architecture for a MM-
DBMS

Traditionally queries are submitted to the DBMS
in a textual form and the system returnes the re-
sult again in textual form. Multimedia data re-
quires an extension of this concept. Results are
no longer presented solely in textual form, there-
fore the corresponding display forms must be part
of the user interface. This opens new possibilities
for the formulation of queries, because queries can
reference displayed objects (e.g. images), parts of
those (e.g. features) with pointing devices or au-
dio just played. Thus, queries are no longer re-
stricted to textual form. They can include non-
textual parts, such as locations of points in a dis-
played map or frames of a presented video pro-
vided by special devices. Similar arguments show
that the manner data is supplied to the system ex-
ceeds traditional forms. Therefore, capture meth-
ods must also be provided by the user interface.

User Interface

Control
Manager

Presentation
Manager

Query
Interpreter

Message & Event Handler

| | |

Transaction Object Comrpunl-
cation
Manager Manager Manager

|

Storage Manager

Figure 1: Architecture of the VODAK MM-DBMS.

These requirements are reflected by the architec-
ture of the VODAK DBMS [8, 7]. VODAK is a pro-
totype of an object-oriented and distributed DBMS
developed at GMD-IPSI. Currently, existing com-

ponents of it are changed and new ones are added
for enhancement in direction to an MM-DBMS. The
architecture of VODAK is shown in figure 1. Every
application has its own modules which are shown in
the figure but data structures like object buffer and
lock tables are shared.

The user interacts with a user interface that is
conceptually divided into three parts: query in-
terpreter, presentation manger and control man-
ager. These modules are described in detail be-
cause they support the above mentioned require-
ments of querying the database and interaction with
the user.

All query input 1s handled by the Query Inter-
preter. The query is assembled from the query ex-
pression and additional information provided by the
Presentation Manager (e.g. location in a window
supplied by a mouse). Analogously the result of a
query is supplied to the interpreter which in turn
utilizes the Presentation Manger to present the re-
sults accordingly.

The Presentation Manager separates all other
modules from the task of presenting database en-
tities. For example information about locations of
display windows and availability of devices is ad-
ministered there. Presentation combines operations
to display, to animate, and to let the user hear some-
thing. The Presentation Manager reliefs applica-
tions of the burden of knowing the means of presen-
tation. An application should not have to specify
how and on which type of device a result of a query
is to be presented, i.e. whether a piece of text will
be displayed or presented acoustically or both. This
doesn’t prevent an application to choose among the
available forms of presentation. Each new presenta-
tion device or presentation method (e.g. a browser)
can be incorporated into the Presentation Manager.

The Control Manager controls the presentation
of multimedia objects and all interactive user input.
The user can change the presentation style or inter-
rupt the presentation through the Control Manager.
Moreover, the capture of objects is also controlled
by this module. If a presentation is stopped by a
user event this request is notified to the Message &
Event Handler.

A short overview of the other modules com-
pletes the description of the architecture. The Mes-
sage & Event Handler is responsible for exchang-
ing messages between objects. The message han-
dler determines the receiver object of a message
and the method to execute. The module super-

www.manaraa.com

vises time constraints and handles synchronization
events. Furthermore, the Message Handler sup-
ports interruption events by pausing or terminating
currently executed presentation operations. The
Transaction Manager performs the same task as in
traditional DBMS. The problems occurring here are
the same as in conversational transactions (i.e. a
roll back is not possible for already presented data).
The Object Manager is responsible for the handling
of the data. Traditionally the objects had all the
same size, this is fundamentally different when ob-
jects with continuous data are handled. Here the
sizes of the objects can vary drastically and some
objects don’t fit into the database buffer in their
entirety. The Communication Manager provides re-
liable and efficient access to remote and heteroge-
neous databases. In addition, it supports a client
server architecture. The storage manager separates
storage devices from the other modules. New stor-
age devices can be integrated at this level, thereby
their characteristics are hidden.

The advantage of this architecture is that it pro-
vides a high degree of flexibility and extensibility.
By providing a generic interface, the details of the
different devices are concealed.

4 A Schema Partition for
Multimedia Data

The proposed architecture requires that the infor-
mation about the database entities must be orga-
nized in such a way, that the different modules
are supported accordingly. This includes the above
mentioned data that characterizes the interactive
presentation of the data, which is beyond the infor-
mation the user is interested in. This data was tra-
ditionally coded into the system. To support new
evolving applications it is necessary that this infor-
mation can be altered and extended. Therefore, it
should be treated similar to the logical and content
information and be part of the schema. This way
it can be shared by multiple users and can be ex-
tended.

The interaction manager requires information
about how to present objects of different types.
This is independent of the logical organization of
the objects with respect to the application. Fur-
thermore, the information needed to capture ob-
jects 1s independent from the presentation infor-
mation. Therefore, we suggest to partition the

database schema into different categories. Each cat-
egory is dedicated to a different aspect: represen-
tation, devices, and interaction. They can be re-
garded as orthogonal. This partition facilitates the
development of new applications, since many parts
can be reused. The necessity of such a partition can
also be motivated from this different point of view.

The primary goal of a MM-DBMS is to realize the
basic functions such as retrieving, searching and up-
dating multimedia data. The next step is to utilize
the rich semantics carried by these data. This can
only be achieved by content search, which is a very
difficult problem as can be seen from the area of in-
formation retrieval, which is still a very active area
of research. The problems of content based search
lie outside the scope of database research and are
difficult to solve. The task of a database manage-
ment system is to provide the framework for do-
ing content search. The organization of the data
must be organized, such that these operations can
be added easily. A clear separation of different cat-
egories of data is necessary: some data are useful
for content queries, other data are only needed for
internal use such as presentation. This implies the
need for a meta organization of the data.

Traditionally information is classified according
to whether it describes logical or physical aspects.
This distinction is reflected in the existence of a
conceptional and a physical schema. We suggest
to enhance this separation by providing three new
categories:

- raw data
- device data

- presentation and control data

This can be achieved by defining different
schemas for the different aspects of multimedia
data.

e a multimedia type schema providing types that
can be used to model multimedia data in appli-
cations, thereby separating the representation
of the data and the supported operations from
aspects specific to applications. Typical exam-
ples are types for arbitrary long bytestrings,
bitmaps, audio or video;

e a dewvice schema providing types constituting
an abstraction for different system configura-
tions in terms of storage devices, auxiliary
devices like compression/decompression hard-
ware, and display hardware;

www.manaraa.com

e an interaction schema providing types for con-
trolling and accessing the presented multime-
dia objects on different devices such as windows
and loudspeakers. These types are the basis to
perform interactive queries.

The application schema provides classes for repre-
senting objects of the application and their seman-
tic relationships. This corresponds to the standard
conceptional schema of a database. The objects
of relevance for the application are modeled using
the types defined in the other schemas. This way
the designer is freed from considering the charac-
teristics of devices and interaction. This eases the
maintenance of applications.

The advantage of this partition is a clear sepa-
ration based on the semantics of the data from the
viewpoint of the database system. This way a high
degree of extensibility is achieved. The separation
of presentation data from the application schema
makes changes of presentational aspects of the data
independent of the application schema. To render
interactive queries it is indispensable to have access
to the presented data (e.g. image in a window) or
to the actual status of a presentation (e.g. slider
representing the time code of audio or video data).
The interaction schema provides the necessary ab-
stractions. Multimedia data 1s intrinsically tied to
special devices. Making information about devices
a part of the database and separating this informa-
tion makes the system very flexible.

The different schemas are compiled separately
and the information is stored in the data dictionary
of the database system. Application schemas can
include these and utilize the types defined there.
This way application schemas are smaller and eas-
ier to compile. Furthermore the maintenance of the
schemas becomes an easy task, since many schemas
use the same device and multimedia type schemas.
Thus, it suffice to change only those, as long as the
interfaces of the types don’t change.

In the following the individual schemas are ex-
plained in detail and their use is illustrated with
examples.

4.1 Multimedia Type Schema

This part describes the different types that can be
used to model multi-media data in applications.
The purpose is to separate the representation of
the data and the supported operations from aspects
specific to applications. For example the concepts of

a photograph and a bitmap must be distinguished.
The former is clearly a notion used in an applica-
tion. A photograph has attributes such as photog-
rapher, date, location etc., whereas the notion of
a bitmap refers to the representation and provides
data such as colors, size etc. The multimedia type
schema contains the types that deal with the repre-
sentation and handling of multimediaobjects. They
form the basic building blocks for applications.

There are two aspects here to consider, the logi-
cal structure of the objects and the representation
of the primitive constituents. For bitmaps the log-
ical structure consists of width, height, pixeldepth
etc. whereas the pixel matrix itself contains the
bulk of data. For the former the object-oriented
data model with its complex types provides suitable
means. The fact that there are different representa-
tion schemes for bitmaps can be modeled by provid-
ing a type BitMap and appropriate subtypes. The
general type BitMap has attributes such as width
and height specifying the dimension of the matrix
of pixels. Furthermore, the methods for manipulat-
ing BitMap objects such as rotate, zoom and crop
are defined here and can be redefined accordingly.

To represent the primitive constituents i.e. the
raw data of multi media a built-in type ByteString
isintroduced. A ByteString can store arbitrary long
sequences of bytes. It can be used to store the
raw data of images, audio and video. It provides
methods for accessing the content in various ways
or as a whole. Moreover, appending, replacing and
cutting of chunks of bytes is supported. Since effi-
cient compression algorithms are media dependent,
they are defined in the corresponding types. Fig-
ure 2 shows the definition of the type ByteString.

Built-in Type ByteString

get(offset : Unsigned, length : Unsigned) : ByteString;
append(offset : Unsigned, aByteString : ByteString);
insert(offset : Unsigned, aByteString : ByteString);
delete(offset : Unsigned, aByteString : ByteString);
importFromFile(name : String) : ByteString;

exportToFile(name : String);

Figure 2: The methods of built-in type
ByteString.

The type ByteString is used to represent sev-
eral multimedia types. Figure 3 shows the def-
inition of the type BitMap. The attribute raw-
Data of type ByteString stores the pixel matrix

www.manaraa.com

of the bitmap. The other attributes width, height
and depth hold the relevant information about a
bitmap. A few methods for manipulating bitmaps
are also included. Specific implementations of
bytestring can be used to store the raw data of audio
and video. The corresponding built-in types guar-
antee that the units of the raw data are clustered.

Type BitMap
width : Integer;
height : Integer;
depth : Integer;
presentation: {Devices}
rawData : ByteString;
rotate(degree : Integer);

zoom(factor : Integer);

crop(x,y : Integer);

Figure 3: The multimedia type BitMap.

The designer of an application schema can use
these multimedia types and is therefore not con-
cerned with the formats of the images. The mul-
timedia type schema contains types for all media
types video, audio, images and graphics. The types
will contain references to types which describe how
to present the objects of those types. These are
collected in the device schema.

4.2 Device Schema

The types in the device schema provide an ab-
straction for interfacing to specific devices such as
input/output devices (loudspeakers, scanners etc)
or auxiliary devices (compression/decompression).
They conceal aspects of lower levels of the system
architecture and encapsulate the corresponding be-
havior. Metainformation about the devices is stored
and an interface is provided.

The implementation of the methods of these
types is not given in the modeling language. This
would decrease the performance considerably and in
cases such as playing a video this 1s just not possible
due to the real time aspects. Instead the methods
are realized as foreign functions. From a conceptual
point of view these types are treated as all other
types. They do not substitute low level real-time
device drivers, they merely constitute the logical
abstractions and provide hooks allowing the devel-
opment of entire multi-media applications. Further-
more, they foster easy adaptation of local devices or
environments to existing application schemas.

The different media need different presentation
devices and for each type there may be different de-
vices available. Each type in the multimedia type
schema has an attribute specifying a list of devices
on which the instances can be presented. Further-
more, a present method 1s also provided which by
default utilizes the first device in this list for the pre-
sentation of instances. The device receiving such a
message activates 1s own present method. Alterna-
tively, the present message can be sent to any one
of the appropriate devices.

Figure 4 shows the defimition of the type
AudioDevice. The parameter of the method
play is an instance of the AudioClass which
all of the datatype Audio.

collects Instances

Type AudioDevice

type : String;

play(data : AudioClass);
setSpeed(speed : Real);
setVolume(level : Integer);
setPitch(level : Integer);

setSampleRate(rate : Integer);

Figure 4: The device type AudioDevice.

4.3 Interaction Schema

The purpose of an interactive query language in a
MMDBS is the same as in a conventional DBMS: re-
trieve data and present the results. Existing query
languages have emphasized the first aspect, the
retrieval of the data in a standardized language.
The second aspect becomes more important in the
framework of multimedia data compared to data in
the form of numbers and strings. The main focus
is:

- complex structures compared to traditional ta-

ble based data;
- the visual presentation of query results;

- the interaction between users and the presen-
tation of multimedia data;

- using results as input for subsequent queries.

The first aspect must be addressed by any query
Tra-
ditionally query languages provide a single, prede-
fined format for presenting query results. By using a

language for an object-oriented datamodel.

www.manaraa.com

device schema it is possible to specify device depen-
dent presentation methods. But it 1s still necessary
to specify the format of the presentation of the re-
sult of a query returning multiple objects (browsers,
different windows etc.).

The manipulation of data through the query lan-
guage in conventional DBMS can be reduced to op-
erations on simple data types (e.g. integer, string).
Communicating with the presentation of multime-
dia data at this level of abstraction provides signif-
icant difficulties, because users would be required
to deal with a low level of abstraction. Instead,
the interaction must be based on operations defined
with the corresponding types. The interaction be-
tween a user and the presentation of multimedia
data should be centered toward using the represen-
tation available to the user as a reference in upcom-
ing queries. Typical query languages are command
languages with all input from the keyboard. FEx-
tending the user dialog by using pointing devices
for selection by pointing in a window promotes the
usage of query results as a reference in subsequent
queries. The new concepts such as windows, sliders
or pointing devices must be made part of the query
language, such that their semantics is inherent to
overall model.

Type Slider
type :

cursor ¢

String;
Bitmap;
window : Device;
getPos() : Integer;
markPos();
changedPos() : Bool,

Figure 5: The interaction type Slider.

The types in the interaction schema provide the
methods to perform interactive queries. Figure b
shows the definition of the type Slider. The method
getPos provide the value of the slider position. It
can be used inside a query expression.

4.4 An Example Type Hierarchy

Figure 6 depicts a type hierarchy for devices. The
intention is not to specify the ultimate device
schema, rather it is supposed to illustrate the gen-
eral idea. Generally, devices are distinguished ac-
cording to acoustical and visual presentation. The
device file allows to import and to export multime-

dia data from and to the filesystem. Types rep-
resenting acoustic devices to record or to play au-
dio data such as microphones or loudspeakers re-
spectively are subtypes of AudioDevice. The device
Window presents images, graphics as well as video
data. The specialization of Window named Cap-
ture Window allows to import visual data from the
screen

Audio
Device
A\
v
Micro- Loud- Capture
phone speaker Window

A\

Mono- Stereo-
Loudsp. Loudsp.

Figure 6: Example of a Device Type Hierarchy.

5 Doing the Job

This section describes how the different schemas
work together. It should be clear from our descrip-
tion of the architecture in section 3 which and how
the modules are involved.

There exists a generic interface for the multime-
dia types defined in the Multimedia Type Schema.
The operations allow to import and to export ob-
jects from or to an external environment and to
present objects to the user. To utilize type depen-
dent semantics polymorphism is used for redefini-
tion of these methods in each type. The operations
for encoding and decoding to compress/decompress
the data are encapsulated in the import/export
methods. A general purpose looseless compression
method can be used in case no specific method is
available. Sources and sinks of the interface oper-
ations are objects of the Device Schema. Thus, an
easy to use access is offered to heterogeneous op-
erations like capture multimedia data shown on a
screen, digitize analog signals, and read or write
data to or from the filesystem. The generic inter-
face is extended for continuous multimedia types to
stop, to pause or to continue a presentation. Figure

www.manaraa.com

7 shows the generic interface and some examples.

<MM_Object>—import(<Device>);
<MM_Object>—export(<Device>);
<MM_Object>—present(< Device>);
<MM_Continuous_Object>—stop;
<MM_Continuous_Object>—pause;
<MM_Continuous_Object>—continue;

aBitMap—import(aCaptureWindow);
aBitMap—present(aWindow);
aBitMap—export(aFile);
aVideo—import(anAnalogVideoDevice);
aVideo—present(aWindow);

aVideo—stop;

Figure 7: The generic interface for mul-
timedia types and some exam-
ples.

The interaction between users and the pre-
sentation of multimedia objects is 1mplemented
by simply sending methods to instances of
the interaction types. The method results
can be used as parameters of other methods.
For example, the currently shown picture of
a stopped video can be grapped by sending
a message to a corresponding slider instance:
aBitMap.rawData:=
(aVideo—getFrameAt(aSlider —getPos).

6 Conclusion

In this paper we have described a system for parti-
tioning the schema of a MM-DBMS. This was mo-
tivated by the need for flexibility and extensibility
in the design of multimedia applications and by the
special dynamic requirements of these data types.
Due to the enormous sizes of the data and the real
time aspects of the their presentation continuous
data can not be handled as traditional data. There-
fore, we provided built-in types such as ByteString
for efficiently handling this data. Built-in types are
a necessary supplement to the data types provided
by database systems to handle discrete data. This
way, a designer is only concerned with modeling the
semantic relationships of the objects and not with
the problem of efficiently handling them. Only the
interfaces of the types are specified in the model-
ing language, their implementation is hidden and
can be realized in a different language. For exam-
ple from the point of view of the datamodel a video

10

clip 1s a list of frames i.e. individual objects, but it
is not implemented this way.

By making types describing devices and interac-
tion tools part of the database schema, a high de-
gree of flexibility is achieved. Furthermore, making
the interfaces of devices part of the schema enables
interactive queries, i.e. queries where input and out-
put is provided in a nontextual form by devices.

References

[1] Aberer K., Klas W. The Impact of Multimedia
Data on Database Mangement Systems 1CSI,
TR-92-065, Berkeley, Ca., September 1992.

[2] Christodoulakis S., Ho F. and Theodoridou M.
The multimedia Object Presentation Manager
of MINOS: A Symmetric Approach Proc. Int.
Conf. on Management of Data, Washington,

1986, 295 - 310.

Fishman D.H. et al. Iris: An object-oriented
database management system ACM Trans. Of-
fice Inform. Syst., Vol. 5, No. 1, Jan. 1987.

Klas W., Neuhold E.J. and M. Schrefel. Using
an Object-Oriented Approach to Model Multi-
media Data Computer Communications, Spe-
cial Issue on Multimedia Systems, Vol. 13, No.
41990, 204 - 216.

LeGall D. MPEG: A Video Compression Stan-
dard for Multimedia Applications. Communi-
cations of the ACM, April 1991, Vol. 34, No.
4, 46 - b8.

Manola F., Hornick M.F. and Buchmann A.P.
Object Data Model Facilities for Multimedia
Data Types. TM-0332-11-90-165, GTE Labo-
ratories Incorporated, Waltham MA, 1991.

E. J. Neuhold, V. Turau (Eds.) Database Re-
search at IPSI. SIGMOD RECORD Vol. 21,
No. 1, March 1992, 133-138.

P. Muth, T. C. Rakow, W. Klas, E. J. Neuhold
A Transaction Model for an Open Publication
Environment. Ahmed K. Elmagarmid (Ed.):
Database Transaction Models for Advanced
Applications. Morgan Kaufmann Publishers,
San Mateo, Ca., 1992.

Stonebraker, M., Rowe, L.: The Design of
POSTGRES. Proc. ACM SIGMOD 1986.

www.manaraa.com

[10]

[16]

Orenstein, J., Manola, F.: PROBE Spatial
Data Modeling and Queryprocessing in an Im-
age Database Application. IEEE Trans. Soft-
ware Eng. 14, No. 5 (1988).

Rowe, L., Smith B.: A Continous Media
Player. Proc. of Workshop on OS/Networks of
AV data, Nov. 1992.

Steinmetz, R.: Synchronization Properties in
Multimedia Systems. IEEE Journal on Selected
Areas in Communications Vol.8 No. 3 April

1990.

Tamura, H. and Yokoya, N.: Image Database
Systems: A Survey. Pattern Recognition Vol.
17 No. 1 1984.

Wallace G.K. The JPEG Still Picture Com-
pression Standard. Communications of the

ACM, April 1991, Vol. 34, No. 4, 30 -44.
Woelk, D.; Kim, W. Luther, W.: Multimedia

Applications and Database Requirements Proc.
IEEE Computer Society Symposium on Office
Automation, April 1987.

Woelk, D., Kim, W.: Multimedia Information
Management in an Object-Oriented Database
System Proceedings of the 13th VLDB Confer-
ence, Brighton 1987.

11

www.manaraa.com

